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Calculation of longitudinal shear dispersivity using 
an N-zone model as N-+ GO 

By S. C .  CHIKWENDUT 
Applied Mathematics Program, University of Washington, Seattle, Washington 

(Received 15 March 1985 and in revised form 31 October 1985) 

A new method is presented for deriving an integral expression for calculating the 
large-time longitudinal shear dispersivity in laminar or turbulent two-dimensional 
channel flow or tube flow. 

1. Introduction 
There are basically four analytical methods of deriving a formula for the longitudinal 

dispersivity of contaminants in shear flows. The first was presented by Taylor (1953, 
1954) in his pioneering work on dispersion in laminar or turbulent flows in tubes. 
Taylor’s method was applied by Elder (1959) to turbulent open channel flow 
and has been extended to three-dimensional flows (Fischer et al. 1979; Chatwin & 
Sullivan 1982). The second method is the concentration-moment method which was 
developed by Aris (1956) and has been generalized by Brenner (1980). In the third 
method (Gill & Sankarasubramanian 1970) the dispersivity is obtained as a function 
of time. This method has also been extended to three-dimensional flows (Doshi, Daiya 
& Gill 1978), and has been modified by Maron (1978) and Smith (1981). The fourth 
approach is the probabilistic formulation of the turbulent dispersion problem which 
was given by Batchelor, Binnie & Phillips (1 955) and has been further validated by 
Lumley (1972). This probabilistic approach has also been used in some laminar flows 
(Jimenez & Sullivan 1984). 

The aim of this paper is to present a different method of deriving a formula for 
calculating the longitudinal dispersivity of contaminants in laminar or turbulent 
two-dimensional channel flow or tube flow. This is a method of zones in which the 
flow is divided into N zones of parallel flow, each of which is considered to  be well 
mixed. A dispersion equation is obtained in each zone and cross-stream mixing 
between the zones is taken into account, leading to a system of N coupled dispersion 
equations. The exact longitudinal dispersivity at large times is calculated for the 
N-zone model and in the limit as N tends to infinity an integral expression is obtained 
for the dispersivity. This integral expression is in agreement with the formulas of 
Taylor and Aris and is an exact large-time analytical result. 

The governing advectivdiffusion equation for contaminant dispersion in two- 
dimensional open-channel flow of depth h is 

where c is contaminant concentration, u( y) is the cross-sectional velocity distribution, 
x is longitudinal distance down the channel, y is vertical distance downward from 
the maximum velocity surface, D, and D, are the diffusivities (laminar or turbulent) 
in the x- and y-directions respectively. 

t Now at the State University of New York, College at New Paltz, New Paltz, New York 12561. 
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FIGURE 1 .  Open-channel flow showing fast and slow zones. 

The starting point of the method of zones is the slow-zone model (Thacker 1976; 
Smith 1982; Chikwendu & Ojiakor 1985) in which the flow is divided into two zones. 
In  the slow-zone model (see figure 1 )  the flow is divided into a fast zone of thickness 
h, near the middle and a slow zone of thickness h, near the wall. Each zone is assumed 
to be well mixed, with contaminant concentrations (c, and c z ) ,  flow velocities (u, and 
u,), diffusivities (D,, and D,,) in the fast and slow zones respectively, and a mixing 
coefficient b between the zones. The resulting coupled dispersion equations are 

(1.2a) 

(1.2b) 

a, C, = D,, a: C ,  -u, a, c1 + bp1(c2-c1), 
a, C ,  = D,, a: C ,  - u2 a, C ,  + bp,(c, - c , ) ,  

where p, = h/h,  = q; l ;  
Chikwendu (19863) solved this system exuctly and found that a t  large times the 

contaminant concentrations approached a Gaussian with a peak travelling a t  the 
mean velocity ii and with dispersivity given by 

= h/h2 = q i l .  

~ ~ 1 ~ 2 ~ 2 ~ ~ 1 - ~ 2 ~ z + 9 1 D , 1 + q z 1 ) 2 2 ,  

b 
D(2)  = 

where q1 and q2 were the fractional thicknesses of the fast and slow zones respectively. 
I n  this paper an exact integral expression is obtained for the dispersivity by 

extrapolating (1.3) to N zones and then taking the limit as N +  00. In  this limit the 
discrete N-zone model becomes an exact continuum model. The resulting formula 
emphasizes the importance in dispersion of the velocity differences (shear) between 
the fast and slow regions of the flow. We begin with a three-zone model. 

2. Three-zone model for two-dimensional channel flow 
We consider steady laminar or turbulent two-dimensional flow of depth h in an 

open channel and for the purpose of analysis we regard the flow as being discretized 
into three layers (figure 2) with thicknesses h,, h,, h3, concentrations cl, c,, c,, 
velocities u,, u2, u,, and diffusivities D,,, DZ2,  D,, respectively. Let the contaminant 
mass flux between zone 1 and zone 2 be given by 

Ml, = 42(C,-C1)7 (2 . la)  

while the contaminant mass flux between zone 2 and zone 3 is 

M 2 3  = '23('3-'2)' (2 . lb )  

Then the governing advective-diffusion equations are 

(2.2a) 
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FIGURE 2. Three-zone model for open-channel flow. 

y = h  , / / /  , / / / /  / /,//, ,,// 

y = o  I i - 7  

FIGURE 3. Concentration profile and mean gradients in the three-zone model. 

a, c2 = oZ2 a; c2-u2 a, c2 +- d l  2 (cl -cz) +- ‘23  (c3-c2) ,  (2.2b) 
h2 h2 

d23 a, c, = D,, a; c, -u3 a, c, +- (c, -c3). 
h3 

(2.2c) 

By Fick’s law, the contaminant mass flux across any horizontal layer is given by 

Thus the mass flux between zones 1 and 2 can be approximated using 

( C 1 - C z )  M12 x - D 
y12 i(hl + h2) ’ (2.4) 

where Dylz  is the average vertical diffusivity between zones 1 and 2 and we have used 
the mean concentration gradient, which is shown in figure 3 as a dotted line from 
the midpoint of zone 1 to the midpoint of zone 2. By comparing (2 . la )  and (2.4) we 
can calculate d12. Similarly, we can calculate d,,, and using these results in (2.2) we 
find that the governing coupled dispersion equations for the three-zone model are 

atc1 = ~zla:cl-.l %Cl+b12P,(c2-C,), ( 2 . 5 ~ )  

(2.5b) 

= U Z 3 a ~ C 3 - u 3 a 5 c 3 + b 2 3 ~ 3 ( c Z - C 3 ) ,  ( 2 . 5 ~ )  

‘ 2  = D,2 c2-u2 a, CZ+b12 p2cc1 - c 2 )  + b23 p 2 ( c 3 - c 2 ) ,  

where 

I h p. = - = q“ (i = 1 , 2 , 3 ) ,  
5 3 

2 D 2 3  1 2Dy12 . 
‘12 = h2(ql+qz)’ b23 = h2((n2;q3) ’ 

41+42+43 = ‘ 7  I 
and DY2, is the average vertical diffusivity between zones 2 and 3. 
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By Fourier transformation using 
00 

l$(h, t )  = s eiAzcjl(x, t )  dx (i = 1 ,  2, 3) 
-00 

(2.5) can be written as a system of ordinary differential equations 

atF1 = -m,(~)F1+b,,P,F,~ 

a$ F2 = - m 2 ( h )  F 2 + b 1 2 r 6 2  F1+b23P2 '39 

'tF3 =-m3(A)F3+b23p3F23 

where 
m,(A) = h2D,, - ihu, + b1,/3,, 

m 2 ( A )  = h2D,2-ihu2 + (b12 + '23) P 2 7  

m,(h) = h2DZ3 - iAu3 + b,,p,. 

Assuming solutions of exponential form 

I$(& t )  = q ( h )  eyt (i = 1 ,  2, 3) 

we find that the characteristic equation for the system (2.8) is 

y3+ (ml + m 2  +m3) y2+ (ml m 2 + m 2  m3 ml- &Z P1 P 2 -  b&i P 2  P3) y 

(2.8a) 

(2.8b) 

( 2 . 8 ~ )  

(2.9a) 

(2.9b) 

( 2 . 9 ~ )  

(2.10) 

+ m 1 m , m 3 - b ~ , p 1 8 2 m 3 - b ~ 3 P 2 P 3 m l  = O .  (2*11)  

This cubic equation for y (h )  is not easily solved and the resulting Fourier inversion 
integrals would be very difficult to  evaluate. We can, however, determine the 
behaviour of the solution a t  large times from the behaviour of the Fourier transform 
when A is small (see Chikwendu 19863). Thus for small A (large t )  we neglect higher 
powers of h and write 

y(A) - B,+ihBl-h2B,, (2.12) 

where B,, B, and B, are constants. The Fourier inverse of (2.10) at  large times is then 

P ( 0 )  O0 ci(x, t )  N exp [B, t-iA(x-B, t )  -A2B, t ]  dA 
2n: -a 

- - + B,t] . (2.13) 
4B, t 

To calculate B,, B, and B, we substitute (2.12) in (2.11) and equate the coefficients 
of An to zero for n = 0, 1 ,  2, and we find that B, must satisfy 

B ~ + u , B ~ + a , B ,  = 0, (2.14) 
where 

(2.15 a) 

(2.15b) 

"1 = blZ(Pl + P 2 )  + b23 ( P Z  + P3) 

"2 = b12 b23(P1 P 2 + P 2  p3+P3 Pl) = b12 b23 P1 P 2  P3. 

Thus the three solutions for B, are 

B,, = 0, (2.16a) 

(B,,, Bo3) = -f",f~(L%;-44a2):. (2.16b) 

Both B,, and B,, are real and negative and in (2.13) would lead to exponential decay 
with time. We therefore require that B, = 0 in order to obtain the dominant 
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behaviour of the contaminant concentration at large times, and we find, after some 
algebraic labour, that 

where u12 = (a, ul + q, uz)/(pl  +Q,) is the mean velocity in zones 1 and 2 combined, 
and uZ3 = (p, u, + q3 u3)/(qz + q3) is the mean velocity in zones 2 and 3 combined. 

It is clear from (2.13) that B, is the longitudinal dispersivity at large times and 
the contaminant concentrations approach the Gaussian 

(2.18) 

where co depends on the initial contaminant mass discharged into the flow and the 
longitudinal dispersivity is given in (2 .17b) ,  i.e. 

3 

+ z QjDzf. 
(Q1  9 2  + ... + Qj)’ ( P i  Qz + ... + ! I f ) ] ’  “ % z . . . j - ~ ~ + i ) . . . 3 1 2  D(3)  = Z 

1 - 1  bf(l+l) j - 1  
(2.19) 

3. N-zone model and the dispersivity in the limit as N +  co 
If the two-dimensional open channel flow is divided into N zones of parallel flow 

with thicknesses hi, contaminant concentrations c f ,  average velocities uf and average 
longitudinal diffusivities D ,  respectively, in each well mixed zone (with 
j = 1 ,  2 ,  ..., N ) ,  then the N coupled dispersion equations are 

where 
h 1  

f % 
p j - h  - _ -  -- ( j = 1 , 2  ,...) N ) ,  ( 3 . 2 ~ )  

(3 .2b)  

and DdO.+l) is the average vertical diffusivity between zones j and (i+ 1 ) .  The zonal 
longitudinal diffusivities D, are calculated in the Appendix. 

In principle the system (3 .1)  can be analysed using the same approach as was used 
in the 3-zone case, i.e. Fourier transformation, the use of a large-time exponent ?(A)  
given by (2 .12) ,  and hence the calculation of D ( N ) .  However, we can simply reason 
by induction from the 3-zone case, (2.19),  that at large times the contaminant 
concentrations will be Gaussian (2.18) and the longitudinal dispersivity will be given 

N-1 

j = 1  

by 

D ( N )  = z ( Q l + Q Z +  * .  . +QfY [ I -  (PI +qz+ ... +Qj)I2 
N 

3 - 1  
[u l z  . . . i - u ( ~ + l ) . . . N 1 2 / b i ( f + l )  + .x D x j ,  (3 .3)  
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where 

U12 ... j = ( 1: qk uk)/( 1: 9,) = mean velocity in the first j zones, (3.4a) 
k = 1  k-1  

3.1. The limit as N +  00 
As the number of zones tends to infinity the zone thicknesses become infinitesimal 
and our sums become integrals. If q = y/h represents dimensionless depth in the flow, 
then as N + m ,  

Q 

0 
qj+Aq; q,+q , . . .q j+J  dq = q ,  (3.5a) 

(3.5b) 

u ~ ~ , , , ~ + -  u(q') dq' = u,(q) = average velocity in the faster layer of a 
two-layer model in which the fractional 
thicknesses are q and (1 - q) ,  (3.5c) 

J: 
u(q') dq' = u,(q) = average velocity in the slower layer of a 

two-layer model in which the fractional 
thicknesses are q and (1 -9). 

1 '  

(1 -q) 5, u(j+l) ... N +- 

(3.5d) 

Thus in the limit as N +  00 the longitudinal dispersivity a t  large times is given by 

It may be noted that the N-zone modcl is an approximation of the actual physical 
situation, but in the limit as N - 2  co the model becomes exact. 

3.2. Plane Poiseuille $ow 
For laminar flow between parallel plates with separation 2h the velocity profile is 

u(q) = iG( 1 - q 2 ) ,  (3.7) 

and from (3.5c, d )  the fast- and slow-zone average velocities are 

(3.8a, b) 

Thediffusivitiesare Dy(q) = D J q )  = k, the moleculardiffusivity. Using these velocities 
in (3.6), we find that 

2h2U'3 
105k + '' 

D(0O) = - (3.9) 

which is the result obtained by using Taylor's (1953) method. 
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3.3.  Turbulent open-channel $ow 
For turbulent channel flow we can use the logarithmic velocity profile 

u(q) = u + U ” [ l + l o g ( l - q ) l ,  
K 

(3.10) 

where u, is the friction velocity and K is the von Karman constant. The fast- and 
slow-zone average velocities are 

u* 
U , ( P )  = U+,log(l-q), 

and the diffusivity is (Elder 1959) 

O,(d = O,(d = hKU*Q(1 -d .  
Thus, from (3.6), 

hu 
D(c0)  = q-’(1-q)[l0g(l-q)]~dq+~~hu, 

0 

0.4041 
- -- hu, + iKhu,, 

K 3  

(3.11a, b )  

(3.12) 

(3.13) 

again the same as Elder’s result. 

4. Pipe flow 
In the case of contaminant dispersion in laminar or turbulent flow in a circular pipe 

of radius a the flow can be discretized into N zones of parallel flow, where the j th  
zone is the annular region between concentric circles of radii r,-l and 
r,(j = 1 ,  2 ,  ..., N ) ,  with ro = 0 and rN = a, as in figure 4. 

If A is the pipe cross-sectional area and A, the cross-sectional area of thejth zone, 
then the fractional area of the j th  zone is 

We can define 
r .  

p j  = 9 = dimensionless radius of the j th  circle, 

W, = p ,  -pj- l  = dimensionless radial width of the j th  zone. 
a 

Then, 
qj = 4@*+17;1-1). 

M,U+l) = %,+I) (C,+1-C,L 

The mass flux between zone j and zone (j+ 1 )  can be written as 

and the contact length between these two zones is 

L, = 27crj. 
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FIQURE 4. Pipe cross-section showing the j t h  zone. 

Thus the coupled advective-diffusion equations are 

Ll dlZ at c1 = D,, a; C ,  - u1 a,cl +- (cz-cl), 
A1 

(4.3a) 

(4.4) 

where Drju+l) is the average radial diffusivity between zonesj and (j+ I ) ,  and we have 
used the average concentration gradient between these zones. 

We can calculate dj(j+l) from (4.4) and use this in (4.3). It is thus found that the 
N coupled dispersion equations are again given by (3.1), where in this case the p j  are 
defined in (4.1) and 

(i = 1,  2, ..., N-1). 4 ~ j  Drjci+l 
b*(j+l)  = ( wj+ y+,, h 2  

(4.5) 

The dispersivity at  large times is again given by (3.3), (3.4) with qj as defined in (4.2). 
Since q1 + qz + . . . + qj = pi”, this dispersivity can be written as 

N-1 4 N 
D ( W =  C Pj (’ -p;)2 . . . j  - u(j+l)... N12 + I: PjDxj. (4.6) 

j = l  bjU+l) j - 1  
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4.1. The limit N + c o  
For pipe flow, as N +  co we again go for the discrete model to the continuum limit, 
and if p = r/a,  then 

y = p j - p j - l + A p y  p j =  x w , + c d P = p ,  (4.7a, b) 
I 

k - 1  

Thus, from (4.6) and (4.7) the large-time dispersivity in laminar or turbulent pipe 
flow is found to  be 

D(co) = lim D ( N )  = a’s’ 0 [2pD,@)]-1p4(1 -p2)Z[up@)-us@)]2dp+~2pDz@)dp. 0 

(4.8) 
4.2. Poiseuille pipe flow 

N + m  

For laminar pipe flow the velocity profile is 

u@)  = 25( 1 - p”,  (4-9) 
and the average fast- and slow-zone velocities are respectively 

up@) = 4 ( 2 - p ) ,  us@) = G(1-p ) .  (4.10a, 13) 

Thus, uP@)-us@) = u, and since D,@) = D,@) = k, the molecular diffusivity, the 
large-time dispersivity is, from (4.8), 

D(a3)=-- a2G r p 3 ( l - p 2 ) 2 d p + k  
k 2 0  

a% 
48k 

=-+k, (4.11) 

which is Taylor’s result. 

5. Conclusion 
The expressions (3.6) and (4.8) derived in this paper for the large-time longitudinal 

dispersivity in shear flows emphasize the significance of the velocity differences 
between the fast and slow regions of the flow, i.e. uf-us. In fact the overall shear 
dispersivity is the integral sum of the dispersivities obtained from all possible choices 
of fast- and slow-zone thicknesses. 

However, these formulae can also be expressed in terms of the velocity deviation 
from the mean, i.e. u‘ = u--U, in the manner of Taylor. Thus using (3.5c, d )  we can 
write 

(5.1) 

where 
2 

u’(p) = u(q)  - u. 
FLY 167 
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Similarly, using (4.7 f ,  g ) ,  we can write 

Thus from (3.6) and (4.8) the large-time shear dispersivity in channel and pipe flow 
respectively can be expressed as 

4 c Q )  = h2 J: D,’(q) [ I,: u’(q’) dP.7 dq + I,; D , ( d  dq, ( 5 . 3 ~ )  

and D(m) = a’s’ [2pD,(p)l-’ [ lP 2p’u’W dp’7 dp+ 2pDx(p)  dp, (5 .3b)  

These equations are in the form of Elder’s (1959) formula, and are of course 
completely equivalent to  the result of Aris (1956, equation 40). 

Finally, it may be noted that the zonal approach presented in this paper may be 
useful in the study of other dispersion problems and other transport phenomena. 

This work was supported in part by the National Science Foundation (U.S.A.) 
under Grant No. DMS-8306592-01. 

Appendix. Two-stage description and the calculation of the zonal 
longitudinal diffusivities D, 
I n  order to calculate the zonal longitudinal diffusivities D,, which appear in (3.1), 
we regard the dispersion process as i f  it takes place in two stages following contaminant 
discharge into the flow. 

In the first stage the contaminant mass in each zone disperses exclusively in that 
zone with no contaminant-mass exchange between the zones. After some time the 
Taylor asymptotic dispersion stage would be reached in each zone and the governing 
advective4iffusion equations would be separate one-dimensional dispersion equations 
in each zone, that  is, 

ate, = ~ ~ ~ a ; c , - ~ , a , ~ ,  (i = 1 , 2 ,  ..., N ) .  (A 1) 

Thus D ,  is defined as the Taylor longitudinal dispersivity that would be obtained 
in the j t h  zone if there were no contaminant mixing between the zones. The solution 
of (A 1 )  would lead to  N separate Gaussian clouds moving downstream. 

In the second stage of the dispersion process contaminant-mass exchange takes place 
between the zones. This exchange is modelled in $ 3  of this paper and leads to  (3.1). 
Thus a t  large times a single Gaussian cloud is obtained. 

It should be pointed out that  the two-stage description given here is an extension 
of Sullivan’s (197 1 )  three-stage description of turbulent dispersion. Of course in 
turbulent flow there is a third stage in which contaminant mixing takes place 
between the mainstream and the viscous sublayer, but in laminar dispersion the final 
asymptotic dispersion state is reached in the second stage and there is no third stage 
(see Chikwendu 1 9 8 6 ~ ) .  

Zonal longitudinal diffusivities D, in plane Poiseuille flow 

For laminar flow of depth h, consider the j t h  zone whose dimensionless thickness is 
qj = h j /h  and which lies in the layer Y;: < q < 5 + q,, where q = y / h  is the dimensionless 
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vertical distance downward from the maximum velocity surface of the flow and 

The mean velocity in this zone is thus 

where u ( q )  is given in (3.7). 
We define 

q- y z = 1 = depth measured from the upper surface of the j th  
qJ zone, divided by the zonal thickness. (A 3) 

If the j t h  zone were divided into two layers as follows, 
(i) a faster layer in which q < q < 5 + qj (thickness zqj )  with 0 < z < 1, 

(ii) a slower layer in which q+qj < q < q+q, (thickness q , -q j ) ,  
then, by applying (A 2) we find that the mean velocities in these two layers would 
be, respectively, 

UPj = Hl- qkj) - q-+(qj)21 
U s j  = &[ 1 - ( q + q) (q, - 

(A 4 a )  

(A 4b) - ( yj + 29j)2 - ihj - zqjl2I. 

Thus, from (3.6), the Taylor dispersivity in the j th  zone is given by 

(A 5 )  J: 22 
D ,  = (hqj)2 Sox (1 - z ) ~  [ U , ( Z ) - U ~ , ( Z ) ] ~  dz+ kdz. 

By using (A 4) in (A 5) and integrating, it is found that in laminar two-dimensional 
flow, the longitudinal diffusivity in the j t h  zone is given by 

It may be noted that as the number of zones tends to infinity the zonal thicknesses 
qj approach zero and D ,  approaches k, the molecular diffusivity. 
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